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Abstract-The combined forced and free convection flow through a porous channel when a pulsatile 
pressure is applied across its ends is discussed. It is assumed that the ratio of the width of the channel to the 
length (6) is small. Even in this physically realistic situation of a finite channel, the transverse velocity remains 
undisturbed and acquires its suction or blowing value at the channel walls. A salient feature of the 
investigation is the presence of steady streaming component in the higher approximations due to 
nonlinearity in the viscous dissipation heat. When the channel is horizontal, the axial velocity distribution 
obtained is exact and independent of 6. But the pressure and temperature distributions are exact and 6- 
dependent. On the other hand, if the channel is vertical, only the pressure distribution is obtained exactly. It is 
independent of the transverse coordinate but varies linearly with the axial coordinate. The velocity and 
temperature are obtained approximately to order O(6). Also the shear stress and heat flux at the walls are 

discussed quantitatively. 

NOMENCLATURE 1. INTRODUCTION 

When written together, primed quantities are dim- 
ensional and unprimed quantities are dimensionless. 

CO, 
C, 
Ei, 
Gr, 
93 
h, 
K 
k, 
L, 
m, 
P’, p, 

Pr, 
pm* 
R 
T’, 
T 
TC’ 
Tl, 
f, 4 
u’, u, 
v’, 4 
V 09 
X,X’, 
YT y’? 

constant defined in (2); 
heat capacity of fluid; 
modified Eckert number ; 
Grashof number ; 
gravitational acceleration ; 
width of channel; 
constant defined in (2); 
thermal conductivity of fluid; 
representative length of channel; 
wall temperature ratio ; 
pressure of fluid in channel ; 
Prandtl number ; 
pressure of fluid at infinity ; 
Reynolds number ; 
temperature of fluid channel; 
temperature of fluid at infinity; 
temperature of lower wall; 
temperature of upper wall; 
time ; 
longitudinal velocity; 
axial velocity; 
suction velocity; 
longitudinal coordinate; 
axial coordinate. 

THE PROBLEM of determining the flow through a 
porous channel driven by a pulsatile pressure gradient 
is a fundamental one with obvious applications in 
physiology and engineering. Berman [l] and Wang 
[2] have studied the velocity distribution and shear 
stresses in an infinite channel while Radhakrishnam- 
acharya and Maiti [3] discussed the heat transfer in 
the same configuration. A major application of the 
work is to the understanding of the dialysis of blood in 
artificial kidneys (see, e.g., [4]). Blood is taken to be a 
homogeneous and Newtonian fluid which is a good 
approximation when the shear rate exceeds 100 s- ’ 
and in channels of depth greater than 100 pm [5]. 

The major concern of this work is two-fold. First of 
all the idealization that the channel is infinite is 
relaxed. The depth of the channel (h) will be assumed 
small compared with the length (KL) so that the 
parameter 

i+<l. 

symbols 

constant defined in (9); 
coefficient of volume expansion ; 
dimensionless parameter defined in (1); 
dimensionless temperature of the fluid; 
density of fluid in channel ; 
density of fluid at infinity; 
frequency parameter; 
frequency of pulsatile pressure. FIG. 1. Coordinate system 
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In which case a pulsatile pressure applied across the 
ends of the channel is now the driving force. Secondly 
we assume that the difference in temperature between 
the walls and that of the undisturbed fluid is large 
enough for free convection currents to flow. The last 
condition may prevail in practice and therefore is 
physically important. The procedure adopted below is 
as follows. 

In section 2 a non-dimensional form of the govern- 
ing equations are deduced. Approximate solutions to 
these equations are given in section 3 on the assum- 
ption that 6 is small. The shear stresses and the heat 
flux are discussed in sections 4 and 5 respectively. 

2. FORMULATION 

The physical problem consists of a porous channel 
inclined at angle cp to the horizontal (Fig. 1). A 
pulsatile pressure is applied across the ends of the 
channel and is given by 

P’W, Y’, r’) - P(0, Y’, t’) 

= C,(l + ccos or’), 0 < x’ < KL. (2) 

The plate at y’ = 0 is maintained at temperature T,, 
while fluid is blown into it with velocity V,,. That at y’ 
= h is kept at temperature T, and fluid sucked from it 
with velocity V,. All the fluid properties are assumed 
constant except the density in the buoyancy force 
terms which varies according to the law 

P, - P’ = PAT’ - T,,). (3) 

This is the Boussinesq approximation in which /I 
represents the coefficient of volume expansion. Sub- 
script cc, refers to conditions in the undisturbed fluid. 

Under this condition the equations of continuity, 
momentum and energy become 

L!&+E=o, 
x’ dy’ 

ali 
P ( , au’ , ad 

XI z+uz+v- ay' > 

( ad ad 
P, ~+u&+“‘~ 

ay’ > 

= -$+/L($+$)-p’gcos,, (6) 

ad ad 2 
+P gyf+g ’ ( ! 

subject to 

u’ = 0, 0’ = I/,, T’ = T, at y’ = 0, 

(8) 

li = 0, v’ = v,, T’ = T, at y’ = h. 

All the primed quantities are dimensional. 
To facilitate analysis we now introduce the follow- 

ing non-dimensional quantities: 

t = at’, x = xl/L, y = y’/h, 

(lb 4 = (u’, v’)lVo, P = (P’ - P’,)hlPVo, 

T’-T 
@=J TI - T, 

T, - T,’ 
a = hC,/pV,, m=T,-* (9) 

R = V,h/v, Pr = p&/k, Gr = 
gPh’(T, - T,) 

vv, ’ 

CT = oh2/v, I% = 
v;L 

hC,U-, - T,) ’ 

Here m is the wall temperature ratio. The non- 
dimensional quantities R (Reynolds number) and Pr 
(Prandtl number) are of order O(1) for the problem 
under investigation. Gr, the Grashof number or free 
convection parameter should be of order O(1) for 
appreciable free convection currents to flow. The 
frequency parameter will be assumed to be of order 
O(1). In the major blood vessels of the coronary 
circulation of man, u is usually of order O(0.7 x 2nR). 
The Eckert number EC = V$C,(T, - T,) is much 
less than unity for all incompressible flows. Thus we 
have introduced a modified Eckert number EC ob- 
tained from EC scaled by 6 - i, so that & will be of order 
O(1) since 6 << 1. Thus we have 

(10) 

= -S~+d’~+$+GrOsinrp. (11) 

dP 
= - 5 + h2$ + $ + GrOcoscp, (12) 

subject to 

u = 0, u=l, O=l aty=O, 

u = 0, v=l, O=m aty=l, 
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P(K,y, t) - P(O,y, t) = a( 1 + ~cos t). (14) ad” at+*) 
The problem is now reduced to mathematical terms. aY 

ape” + iPuc’r 
u,t+Rp=-- - aY aY2 

+ GrO”‘)cos cp, 

We want to solve (lo)-(13) subject to (14). This (26) 

problem is non-linear, coupled and not easily amen- 
able to analytical treatment. Since all parameters in 
equations (10)-(13) are of order O(1) except 6, asymp 
totic analysis is in order and this will be discussed in 
the next section. Before then, we note that in (7) we 
have retained the viscous dissipative terms that are 
usualtv neglected in free convection problems involv- 

nti) = Q(‘) =2 Q(i) =i 0 at Y = 0, (28) 

ing low velocities. But as shown by Gebhart [6] and i&f) = $ii =: @ii = 0 at Y = 1, (29) 
Gebhart and Mollendorf [7],viscousdissipative effects 
play an important role in natural convection flow fields P(*)(K,y,t) - P”)(O,y,t) = 0, etc. (30) 

of extreme size, or extremely low temperature or in 
high gravity. These are various situations prevalent in 3.1. Order O(1) solution 

physiology and engineering. We have also considered a The solution of equation (20) subject to (21) and (22) 

channel of arbitrary inclination cp. In all quoted works is easily deduced as 

in section 1, 9 is taken as zero. However other values of 
@‘O’ = 1 + 

m-l 
v, are possible in practical applications, especially 40 eRR-1 

(ePrRy - 1). (31) 

= 7r/2. For versatility qa will be left arbitrary in the 
analysis and various limits discussed as special cases. By virtue of (31) (19) becomes 

3. APPROXIMATE SOLUTIONS 
pt 0) = f’“’ (x, c), (32) 

In order to make any headway with the analysis we in which case (18) reduces to 
shall assume that 6 is small and all other parameters 
are of order O(1) in equations (IO)-(13). We then 
expand the axial velocity and temperature in the form 

oz+R!!$!= -~+!!$?+Gr@‘0!sin~. 

U = do) + 6u”) + 0(6'), etc. (15) 
Putting 

while the transverse velocity is approximated by u(O) = ur)(x, y) + $c(u:“)(x, y)e” + li\O’(x, y)e-‘0, (33) 

v = 1 + 6v”’ + O(S2), 

and the pressure expressed as 

(161 
pa) = Jr’(x) + &(_@(x)eit + ff)(x)e-‘I), (34) 

P = ljpor + pclj + o(s). (17) 
where a tilde over a symbol represents complex 
conjugate, we find that the solutions satisfying (21)and 

When we substitute (15)-(17) into (lo)-( 14) we obtain 
(22) are 

the sequence of approximations : 

au(o) adO) 
a-aT+Rp=-p - ?Y 

aP + a2do) 
8x sy2 

+ Gr @(o’ sin cp, m-l 

(18) 
,@J’eRy + @” + ___ 

eBR- 1 

aP ()= -__ 
2Y 

+ Gr 0”’ cos cp, 

&p’ 
Pro--- 

2@B 32 gp 

at 
iPrR---=- 

;ir ay2 ’ 

(19) 
ePrRY 

x 
[ 

---+ PrRyf Pr 
Pr - 1 

(20) ,@’ = 

*J(O) = 0, @O) = 1 at y = 0, (21) 

u(O) = 0, @(Ok = m at y = 1, (22) 

P”)(K,y, t) - P(')(O, y, t) = a( 1 + ECOS c); (23) 

auto) &I) 
ax+-=o, 

aY 

ad’) ;I,@, 
c---- + Ru’O’-- + R 

at ax 

(24) 

zzz 
ap’1) + a2uto) puci2 

-- _ 
iix ax’ + ay2 

__ + Gr 0” sin cp, (2.5) 

and 

u’p’ = ;fYw {(A) 

x 

[ 

(1 _ eno)emOJ + (emo - 1 )enoy 

1 1 - 1 , 

m,, a, = $[R it (R2 + 4icr)’ ~‘1. (34) 
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Next we determine the functionsf~~)i(x) by sub- 
stituting (35) and (36) into the continuity equation of 
the order O(6) problem, i.e. (24). We find that to satisfy 
the conditions on u(‘) as given in (28) and 129) we must 
have 

u(1) = 0 (37) 

and 

So”’ = 0 = ,f’:o’“(_u). (38) 

We may take * 

fb”’ 1=- &e’x; f:“’ = Q’,x. (39) 

Putting (34) and (39) into (32) and employing (23) we 

get 

@’ = _T = A\“’ 
K 

(40) 

and the order O(1) solution is now complete. 

3.2. higher-order a~~ro~i~tions 
In order to obtain higher-order approximations we 

substitute (31), (33) and (37) into (27) and write 

0”) = ~g)(~,~) + $8(@;)eir + @i)e-if) 

+ &c2(@i)e2is + @i)e-2ir). (41) 

We then get 

With the help of (35) and (36), the solutions of these 
equations satisfying (28) and (29) are 

+ 0:‘) en1 r - h(,‘i(y)], 

m,,n, = )[prR + (Pr2 R2 + 4ia Pr)‘.‘], (43) 

and 

m2,n2 = i[pr R L (Pr’ R2 + 8iaPr)1’2]. (44) 

For brevity we have put 

e2RZ 2eRz 
had(s) = - 2(2 - pr)(eR _ 112 ’ F( 1 _ pr)(eR _ 1) 

+- p&(l + PrRz), 

@j(z) zz - 
&W e2Rz 
O 

(m - 1)2e2prRz 

2R(2 - Pr) - 2R(Pr - I)2e(eP’K - if 

2.4”) Pr - o-.- 
R(l - Pr) i 

m-i 

e”R 

2Pr(m - I) 

i 

m- 1 
-(Pr - l)(e”‘R - 1,) ePrR - 1 , 

2a(m - 1).4’00’ 
R(Pr2 - l)(efiR - 1) 

eR(R+ 1)~ 

‘(1 + PrRz), 

m-i _-.._ ,el’rR.- 
+ F.=j-)(e” R _ 1 ) 

P,.(~ _ ~)~Npr+ 1): 

(Pr’ - l)(eR - l)(eprK - 1) 

-F$[;$+ $1 +prRz), 

Im,(l -en”)/’ h;“(z) = ___---~___~ e em,, + d,,k 
(m. + ti,)(m, + Go - PrR) 

_ 2Re _IlfofO( 1 - e”cJ)( 1 - em’)) e’m” + 6,): 
(m, + rio)(mo + n;, - Pr R) 1 

j no{ 1 - em()) / ’ 
- (no + 6&z,, + T& - Pr R) e(no + “)” 
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kjg(z) = - %fl - en”) 

(e” - lfF(R + mo} 
e(R+mdz 

3io(emo - 1) 

- (eR - 1)F(R + no) 
eW+11$2 

Prm,(m - l)(l - e”l’) e(PrR+mob 
- (Pr - l)(e”‘R - 1) F(Pr R + m,) 

PrR(n - l)(emo - l)e(BR+no)z 

- (Pr - l)(eFCR - l)F(PrR + n,) 

- 

- 

k[:d(z) = - 
n&en0 - 1)2 ezmiIz _ $(emn - lt2 

F,(2%) RI(%) 

where Re stands for the real part of a complex variable, 
and 

F(z) = 22 - Pr Rz - iciPr; 

F,(z) = z2 - Pr Rz - ZicrPr. 

The arbitrary constants are given by 

C$j = ~e~~k~~~{O) - k~~~~~})/(e~~ - 1); 

D&“j = [k&r(l) - k@(0)]/(eRR - 1); 

Ccl = [e”iki:)(O) - k$r(l)]/(e”’ - emi); 

oif) = [@j’(l) - hjf)(o)@]/(e”~ - emi) 
(45) 

I)f” = [hf”fl) - k~‘)(O)]/(e”” - If. 

In (42), the terms independent of e arise as a result of 
the steady component af the driving pressure and free 
convection heat transfer. The terms dependent on I: is 
the steady streaming component which is due to the 
non-linearity of the governing equations and it is this 
phenomenon that has attracted particular interest in 
purely oscillatory flows past curved bodies. The steady 
streaming here is due to heating in the presence of 
viscous dissipation. It is also present in the velocity 
distributions of the present approximation 

Next we calcutate the pressure distribution by 
substituting (3f) into (24) which we then solve to get 

-i- .f”‘(X, t). (46) 

Finally we express 1.6’) andfCi)(x, t) also in the form 

r(( ” = ugb + .&;(u(;)eir + $;be-if 

+ $lz2(ti(: 1 eZit + ~$1) e - Zit), 

then (25) simjlarly separates out as 

Hence the solution of these equations can be written as 

r$ $x, Y) = ,f$“‘(xf Hy r(Y) - Grsin 9 Gl'Y y), 

and if these are substituted into the relevant equations 
for the order O(S’) problem, namely 

then we find that 

r’“’ = 0 , (47) 

j:“‘“(X) = 0 =_j(,““(X) = j‘iZf)“(X), (48) 

As a result of (30) we have 

,fb”(X) = 0 = j-l”(X) = #j(x). (4% 

So we can employ (42)-(44) and derive the solutions 

x [A$‘) + B~l)eRy - g:*)(y)]. (50) 

u’,” = - Pr EC 
2a2 Gr sin cp 

ii7 K(e”cb - ens?) 
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f EC 

m:,n: = $[R & (R’ + 4ia)“2], (51) 

u’z’)== - PrEc 
Gr a2 sin cp 

rrzjq2(emc~ _ en0)2 

x [/qJe”:’ + B$je”ty - g$‘d(y)], 

m$,rrf = )[R + (R’ + 8irr)‘:2J. (52) 

Now we have set 

Z 
goj(z) = eRZ 

s s 
eefidz ‘It&)(z)dz 

+ C$$ (1 + Rz) - Dal 
epI Rt 

RZ Pr(Pr - 1) ’ 

g:‘)(z) = eRZ ’ hLr)(z)dz 

+ C”‘& + Rz) _ D”‘-_.e??____ 
’ RZ ’ R’Pr(Pr - 1)’ 

C$ 
g’(‘d(z) = - -emfr 

D($ 

G(m,) 
- __&Q* 

G(nJ 

m,(l _ enli)e(R+m)= 

- (eR - l)F(R + m,)G(R + mo) 

n,(e”o _ l)eCR+ndz 

- (eR - l)F(R + no)G(R + n,) ’ 

m,( 1 + e”“)emoz 
t- 

R F~m~)G~m~) 

tzo(em” - 1) en+ 

+ R WdG(n,) ’ 

C(I) 
&f!(z) =r - 11 e ml* D’l’l’ 

G(mA 
_ G(n,)enlz 

A~)m,( 1 - en’)) - 
F(R + m,)G(R + n,) 

e(R+mu).- 

A$) n,(em” - 1) 
- e(R+%)z 

F(R + n,)G(R + n,) 

prmojm _ I)( 1 _ e”o)e’~‘+“‘i~)z 

- (Pr - l)(eprR - lfF(PrR + m,)G(PrR + n,) 

m;(e”” _ I)2 e2mlJ= 

F,(2mo)G,(2mo) 

+ 

2mo fzO(em” - -1 )(e”” - 1) e(ml,+ _,)= 

Fib0 + dG,(m, + noI 

where 

G(z) = z2 - Rz - icr, G,(z) = z* - Rz - 2ia. 

The arbitrary constants A,,, (I) S$,g etc. can be written as 
in (45). The solution to order O(6) is now complete. 

First of all we observe that the transverse velocity is 
the same as for the idealized infinite channel. For the 
horizontal channel (cp = 0) the axial velocity becomes 
exact and is independent of 6, its value being given by 

It = @ + $iL(Ui~)ei’ + tj(F)emif), (53) 

where @ and u\“) are given by (35) and (36) with q 
= 0. It is therefore independent of the free convection 
parameter Gr and corresponds essentially to the so- 
lution for an infinite channel. When the channel is 
vertical the axial velocity exhibits a dependence upon 
Gr for all approximations. 

Even in the case of a horizontal channel, the pressure 
distribution shows a strong dependence upon 4’ as a 
result of the free convection heat transfer. The only 
exception is for a vertical channel where it is given 
simply by 

Unlike the velocity distribution, the temperature 
distribution is always d-dependent for all channel 
orientations and even in the limit as Gr + 0. Therefore 
the effect of finiteness of the channel length has more 
profound effect on the temperature and pressure of the 
fluid. 

4. SHEAR STRESSES AT THE WALLS 

From the physical point of view, it is necessary to 
know the shear stress at the walls of the channei. They 
are given by 

prno(m _ j)(emo _ l)e(PrR+“d- which by virtue of (9) can be written as 

- (Pr - t)(ePrR - l)F(PrR + n,)G(PrR + no) 1 ? 

~~~~~fJ($i&-I)e”@ ~““=~=~~~:::+i~~i,~i=,~~,~,ei~“~. (54) 

Pr n&e”” - 1) 

00) G(n,) 
[G - l)ennz, 

Since the velocity profile is identical to that of an 
infinite channel when 40 = 0, we consider the situation 
for a vertical channel. 

C D$j gy&) =: - -__zLem2r _ ____ew The values for shear stresses for cp = n/2 are entered 
G,(m2) G,(n,) in Table 1 for various values of the parameter. First of 
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G I% 111 

5.0 0.1 -1.0 

5.0 0.1 2.0 

5.0 0.2 2.0 
10.0 0.2 2.0 

1 
5 

10 
15 

5 
10 

5 
5 

Table 1 

&I D, tan a, tan c(, 

5.9108 2843.4753 0.2426 - 0.0864 
6.0875 2843.7578 0.2254 -0.4197 
6.0329 2844.2840 -0.1490 - 0.7698 
5.7365 2854.7101 -0.5107 - 1.0131 
6.1384 - 479.5440 0.2354 - 0.4297 
6.0838 -479.0178 -0.1490 - 0.7698 
5.7752 - 948.9680 0.2354 - 0.4297 
9.8240 - 1500.0000 0.2754 - 0.4997 

R = 1.0, Pi- = 0.71, a = 1.0, 6 = 0.01, 5 = 1, t = B. 

Table 2 

G EC In ELI El tan a, tana, 

5.0 0.1 -1.0 1 -0.4165 17.0535 0.3473 2.7389 
5 -0.8088 8.3545 0.5938 1.3015 

10 - 0.9805 5.2226 0.6679 0.5116 
15 - 0.8404 1.1221 1.0153 2.1358 

5.0 0.1 2.0 5 0.9713 5.0192 - 0.0367 0.2202 
10 0.9488 4.8514 1.3399 -0.6019 

5.0 0.2 2.0 5 1.2759 9.3518 - 0.0367 0.2202 
10.0 0.2 2.0 5 1.4711 14.8436 -0.4322 0.3806 

R = 1.0, Pr = 0.71, a = 1.0, S = 0.01, [ = 1, t = n. 

all it can be observed that the shear at the upper wall is 
much larger than that at the lower wall. When the 
average of the temperatures of the two walls is equal to 

that of the static fluid (m = - l), the shear stresses are 
positive; but for unequal wall temperatures (m = 2) 
the shear stress on the upper wall changes direction. 
For the lower wall an increase in frequency causes a 
rise in the shear stress at low frequencies and decrease 
at high frequencies. The shear stress at the upper wall 
always increases with increase in frequency. A rise in 
the free convection parameter Gr results in cor- 
responding rise in the shear stress. 

However an increase in the viscous dissipation heat 

EC causes a reduction in the stress on the lower wall 
and rise on the upper wall. 

5. THE HEAT FLUX 

Knowing the temperature distribution we can cal- 
culate the heat transfer, q’, at the walls from the 
relation 

9‘= _kdT’ 
3Y’ y’=O.h 

which by virtue of (2.5) reduces to the following non- 
dimensional form : 

hq’ ao 
q= -k(T”-T,)=ay y=o,l 

= II?,., leiPO.l. (55) 

Again when cp = n/2, the values of (55) are entered in 
Table 2. 

Similarly it is observed that the heat transfer rates 
are higher at the upper wall than the lower wall. When 
the frequency increases the heat transfer at the lower 
wall increases (in absolute terms) for small frequencies 
but decreases at the higher frequencies. The heat flux at 
the upper wall decreases always with increase in 

frequency. Also the heat flux at the lower wall changes 
sign when m changes from - 1 to 2. An increase in 
viscous dissipation heat EC and free convection para- 
meter Gr causes a corresponding increase in the heat 
flux at the walls. 
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ECOULEMENT PULSATOIRE DANS UN CANAL POREUX ET CHAUFFE 

R&urn&-On dtudie la convection mixte dans un Ccoulement i travers un canal poreux quand une pression 
pulsatoire est appliquke aux extrCmitts. On suppose que le rapport de la largeur du canal B la longueur (6)est 
petit. Danscette situation physiquement rialiste d’un canal fini, la vitesse transversale demeure non perturb&z 
et elle acquiert sa valeur de suction ou d’injection aux parois du canal. Un point saillant de l’&ude est la 
prisence d'une composante stationnaire dans les approximations d'ordre e’lev6 due d la non-lindariti dans le 
terme de dissipation visqueuse. Quand le canal est horizontal, la distribution de vitesse axiale obtenue est 
exacte et ind~~ndante de S. Mais Ies distributions de pression et de tem~rature sont exactes et dependantes 
de 6. Par ailleurs, si le canal est vertical, seule est obtenue exactement la distribution de pression. Elle est 
independan te de la coordonnie transversale mais elle varie lintairement avec la coordonn&e axiale. Lavitesse 
et la tempe’rature sont obtenues approchks i I’ordre O(6). La tension de cisaillement et le flux de chaleur aux 

parois sont disc&s quantitativement. 

PULSIERENDE STR~MUNG IN EINEM BEHEIZTEN PORC)SEN KANAL 

Zusammenfassung-Dieerzwungene Strlimung mit iiberlagerter freier Konvektion in einempordsen Kanal, 
an dessen Enden ein pulsierender Druck aufgeprsgt ist, wird eriirtert. Dabei wird angenommen, da8 das 
Verhgltnis von Kanalbreite zu -I&ge (6) klein ist. Nur in diesem physikalisch realist&hen Fall eines 
begrenzten Kanals bleibt die Quer-Geschwindigkeit ungestbrt und erreicht ihren Saug-oder Ausblaseffekt an 
den KanalwPnden. Ein herausragendes Ergebnis der Untersuchung ist das Auftreten eines stetigen Anteils 
der StrGmung bei den Approximationen hiiherer Ordnung, verursacht durch eine Nicht~nearit~t der 
viskosen Dissipation. Bei waagerechtem Kanal ist die berechnete Verteilung der Axialgeschwindigkeit exakt 
und unabhingig von 6. Druck- und Temperaturverteilung sind jedoch exakt und S-abhtigig. Andererseits 
ergibt sich bei senkrechtem Kanal nur die Druckverteilung exakt. Sie ist unabhtigig von der Quer- 
K~rdinate,~dert sichjedoch linear mitder Lungs-Koordinate.~e~hwindigkeit UndTem~raturerge~n 
sich n%herungsweise als Funktion von 6. Ebenso werden Schubspannung und WIrmestromdichte an der 

Wand quantitativ beschrieben. 

lIYJIbCAI.JMOHHOE TEYEHME B HArPEBAEMOM IlOPMCTOM KAHAJIE 

Anno-rauwa- PaCCMaTp~BaCTC~ CMemaHHOe T@ieH&ie npti CEO6OA~O~ H BbrHy~AeHHO~ KOHBeKU~n B 

nopiic~oM KaHane ~cnyrae,KorAa nynbcMpytomee AaBne3iHe npenoXes0 nonepeK ero K~HUOB. lIpen- 

nonaraeTcsi,q~o 0rfiomeHIie mltps~bl KaHana K ero AntiHe(fi)nenreTc~ ManoR eenssesoii. noKa3atio. 

‘ST0 B 3TOfi (P8311YeCKII FaflbHOfi CHTyauMH KaHaJIa KOHeqHOfi IINIHbl nOnepeYHaS KOMnOHeHTa 

CKOp0C-r~ OCTaeTCIl He~3MeHHo~ A np~"~~aeT 3HaqeHi5e CKOpOCTll BAyBa WJIM OTCOCa Ha CTeHKe. 

OTJWIWTeAbHOfi oco6eHHocTbm 3aAaW IIBJIW.!TC# HaJlH'lHe CTaWiOHapH0i-i KOMnOHWTbl CKOPOCTll 

TeqeHm B annpoKcuMausnx ablctuero nopsnra 113-38 HenliHeZaocTB sa3~oA AuccmIamiII Tenna. 

B CJIy'tae, KOI-Ala KaHaJl paCFlOJrOXeH rOPH30HTanbH0, MOXHO Hai?W TOYHOe PaCnpeAeJEHlle aKCl%UIb- 

HO+i CKOpOCTU, KOTOpOe He 3aBRCIIT 01 BeJfU9NHbl napt%MeTPa 6. B TO Xe BpeMI paCtlpeAeJIeHtIX 

AaBneHHa H TeMnepaTypbI IIBJIXH)TCs TOYHblMH M SBBACIIUWfMM OT IlapaMeTpd 6. c ApyrOti CTOpOHbI, 

ecnli KaHan pacnonoaefi eepTl,iKanbso, TO TO'lHOti BeJlWWHOfi IlBAReTCIl TOnbKO PaCnpeAeJIeHMe 

AaBJIeHufl, KOTOpOe He3aBifCIIT OTnOnepeYHOii KOOpAAHaTblA N3MeHReTCI JfHHeiiHO COCeBOii KOOPAW 

~aToii.3~alre~a~cKopoc-reu~e~nepaTypbron~~enesb~npu6nti~e~~ocTo~HocTb~A0 O(6). HaiiAeHbI 
TaKXe HanpGKeHMe CABera H n,,OTHOCTb TenJIOBOrO IlOTOKa Ha CTeHKe. 


