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Abstract—The combined forced and free convection flow through a porous channel when a pulsatile
pressure is applied across its ends is discussed. It is assumed that the ratio of the width of the channel to the
length (8)is small. Even in this physically realistic situation of a finite channel, the transverse velocity remains
undisturbed and acquires its suction or blowing value at the channel walls. A salient feature of the
investigation is the presence of steady streaming component in the higher approximations due to
nonlinearity in the viscous dissipation heat. When the channel is horizontal, the axial velocity distribution
obtained is exact and independent of 8. But the pressure and temperature distributions are exact and §-
dependent. On the other hand, if the channel is vertical, only the pressure distribution is obtained exactly. It is
independent of the transverse coordinate but varies linearly with the axial coordinate. The velocity and
temperature are obtained approximately to order O(8). Also the shear stress and heat flux at the walls are
discussed quantitatively.

NOMENCLATURE

When written together, primed quantities are dim-
ensional and unprimed quantities are dimensionless.

Co» constant defined in (2);

Cp heat capacity of fluid;

Ec, modified Eckert number;

Gr, Grashof number ;

g, gravitational acceleration;

h, width of channel;

K, constant defined in (2);

k, thermal conductivity of fluid;
L, representative length of channel;
m, wall temperature ratio;

p,P, pressure of fluid in channel;
Pr, Prandtl number;

P, pressure of fluid at infinity;

R, Reynolds number ;

T, temperature of fluid channel;

T . temperature of fluid at infinity;
Ty, temperature of lower wall;

T,, temperature of upper wall;

t,t, time;

u,u, longitudinal velocity;

v,v, axial velocity;

Vo suction velocity;

x,x, longitudinal coordinate;
»y, axial coordinate.
Greek symbols
, constant defined in (9);
B, coefficient of volume expansion ;
9, dimensionless parameter defined in (1);
0, dimensionless temperature of the fluid;
o, density of fluid in channel;
0 s density of fluid at infinity ;
a, frequency parameter;
w, frequency of pulsatile pressure.

1. INTRODUCTION

THE PROBLEM of determining the flow through a
porous channel driven by a pulsatile pressure gradient
is a fundamental one with obvious applications in
physiology and engineering. Berman [1] and Wang
[2] have studied the velocity distribution and shear
stresses in an infinite channel while Radhakrishnam-
acharya and Maiti [3] discussed the heat transfer in
the same configuration. A major application of the
work is to the understanding of the dialysis of blood in
artificial kidneys (see, e.g., [4]). Blood is taken to be a
homogeneous and Newtonian fluid which is a good
approximation when the shear rate exceeds 100 s™!
and in channels of depth greater than 100 um [5].

The major concern of this work is two-fold. First of
all the idealization that the channel is infinite is
relaxed. The depth of the channel (h) will be assumed
small compared with the length (KL) so that the
parameter

b=y <L (1)

Gravitation ®

i,
i,

FiG. 1. Coordinate system.
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In which case a pulsatile pressure applied across the
ends of the channel is now the driving force. Secondly
we assume that the difference in temperature between
the walls and that of the undisturbed fluid is large
enough for free convection currents to flow. The last
condition may prevail in practice and therefore is
physically important. The procedure adopted below is
as follows.

In section 2 a non-dimensional form of the govern-
ing equations are deduced. Approximate solutions to
these equations are given in section 3 on the assum-
ption that é is small. The shear stresses and the heat
flux are discussed in sections 4 and 5 respectively.

2. FORMULATION

The physical problem consists of a porous channel
inclined at angle ¢ to the horizontal (Fig. 1). A
pulsatile pressure is applied across the ends of the
channel and is given by

P(KL,y,t) = p(0,y,1)

= Co(l + ecosat’), 0<x"<KL. (2)

The plate at y¥ = 0 is maintained at temperature T,
while fluid is blown into it with velocity V. That at y’
= his kept at temperature T, and fluid sucked from it
with velocity V. All the fluid properties are assumed
constant except the density in the buoyancy force
terms which varies according to the law

pPe—p =p BT -T,) 3)

This is the Boussinesq approximation in which f

represents the coefficient of volume expansion. Sub-

script oo refers to conditions in the undisturbed fluid.

Under this condition the equations of continuity,
momentum and energy become

ou' + o
ox' oy

ou' o ow +y ou'
Pe\ar "o T oy

e
T “6x'2

2ul i
“ay,2> - pgsing, (5)
ov o o o
—+u
Pe\ar ax Y dy'

=0, 4)

op’ 2y o
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subject to
=0, v=V, T'=T, aty =0,
©®)
u=0 v=V, T'=T, aty =h

All the primed quantities are dimensional.
To facilitate analysis we now introduce the follow-
ing non-dimensional quantities:

t=wt, x=x'/L, y=y/h,
(,v) = W, )/Vo, P=(" —pIhuV,,
T -T I,-T
=—"2 a=hCy/uV,, =—2= (9
] To—T, « o/ Vo, Mm To— T, ©)
gph¥(Ty —~ T )
R="Vyh/v, Pr=puC)k, Gr=——"_—"—
v,
_ ViL
=oh?fy, Ee=—7"12"__,
hCo(To — T)

Here m is the wall temperature ratio. The non-
dimensional quantities R (Reynolds number) and Pr
(Prandtl number) are of order O(1) for the problem
under investigation. Gr, the Grashof number or free
convection parameter should be of order O(1) for
appreciable free convection currents to flow. The
frequency parameter will be assumed to be of order
O(1). In the major blood vessels of the coronary
circulation of man, ¢ is usually of order 0(0.7 x 2nR).
The Eckert number Ec = V}/C(T, — T,) is much
less than unity for all incompressible flows. Thus we
have introduced a modified Eckert number Ec ob-
tained from Ec scaled by !, so that Ec will be of order
0(1) since & « 1. Thus we have

u Ov

St — =0, 10
ox 0Oy 1o)
du 6u 6u
o? tu
= —(5%}z+52—u+6 5+ Gr@®sing, (11)
ov v ov
Z 4+ R{ou—" bt
66t+ ( o +v@y>
oP Pv v
=—5+626 +62+Gr®cos<p, (12)
e[C) 00 /0
— + PrR{ou—
Pr06t+ r (ua +v 8y>
20 629 du ov\?
_ 52 Ecéd 52
562 +2Prc[ <6)+<6y>:|
2
+PrEc5< +5—); (13)
dy Ox
subject to
u=0, v=1, ®©=1 aty=0,
u=0, v=1, @=m aty=1,
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P(K,y,t) — P(0,y,t) = ol + ecost). (14)

The problem is now reduced to mathematical terms.
We want to solve (10)-(13) subject to (14). This
problem is non-linear, coupled and not easily amen-
able to analytical treatment. Since all parameters in
equations (10)-(13) are of order O(1) except 4, asymp-
totic analysis is in order and this will be discussed in
the next section. Before then, we note that in (7) we
have retained the viscous dissipative terms that are
usuallv neglected in free convection problems involy-
ing low velocities. But as shown by Gebhart [6] and
Gebhart and Mollendorf[ 7], viscous dissipative effects
play an important role in natural convection flow fields
of extreme size, or extremely low temperature or in
high gravity. These are various situations prevalent in
physiology and engineering. We have also considered a
channel of arbitrary inclination ¢. In all quoted works
in section 1, ¢ is taken as zero. However other values of
@ are possible in practical applications, especially ¢
= 7/2. For versatility ¢ will be left arbitrary in the
analysis and various limits discussed as special cases.

3. APPROXIMATE SOLUTIONS

In order to make any headway with the analysis we
shall assume that ¢ is small and all other parameters
are of order O(l) in equations (10)-(13). We then
expand the axial velocity and temperature in the form

u=u® + 6ud + 0(8?), etc. (15)

while the transverse velocity is approximated by

v=1+&'" 4+ 0%, {16)
and the pressure expressed as
1
P=5P‘O’+P‘”+O(5}. (17

When we substitute {15)-(17} into (10)-(14) we obtain
the sequence of approximations:

O O GPO 2y

O Fu” ) i
M TR o FgE TOrOTsme
(18)
aptv
0= — + GrO9cos g, (19)
Q©® 20O 52 0
P PrR—— =",
r o a + Pr 3y 63}2 20
W =0, @9 =1 aty=0, 2H
U =0, @%=m aty=1, 22
PONK, y,t) — PO(0,y,t) = afl + gcost); (23)
u'® ot
— =90
ax dy ' 9

ou'h ou'® outh) ou'®
6-~+Ru‘°’~——+R< +v“’———~>

ot ox dy dy
SPY 8240 LLETY
= e {13 g
Ew ol P + GrOWsing, (25)
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() (1 () p2 0
0%+ 62_= —-qg- auz + Gr@W cos o,
y y y (26)
pregy ©) e) ()
Pro +PrRu‘°’@9-——+PrR e +L® ot
ot Ox ay dy
2On o\
=0 B[, @7
p + Pr c( E® ) 27)
W= =@M =0 aty=0, (28)
W= =M =0 aty=1, (29
PUYK, y, 1) — PO, y,6) =0, etc. (30)

3.1. Order O(1) solution
The solution of equation (20) subject to (21) and (22)
is easily deduced as

-1

00 =1+ efﬂ PP ()
By virtue of {31}, (19) becomes
PO = fO(x,1), (32)
in which case (18) reduces to
u® ou'® BfO 32y
it b C AT (0) o
o E 3y e + 3y + Gr®sin ¢.
Putting

W = uP(x, y) + B, y)e + d P, y)e ). (33)

£O = 1900) + 3 P + TPx)e ), (34)

where a tilde over a symbol represents complex
conjugate, we find that the solutions satisfying (21)and
(22) are

4O = SOy fe® -1
0 R \ef—1 7

Grsin @
PrR?

(0) o Ry o, m-1
{AO € +BO +ePrR

ePlRy
X‘:Pr—l + PrRy+Pr]-—PrRy— Pr} (35)

1 m-—1 [efrR—1
AP=_—  JPFR— e | = 4+ PrR X
o e"—l{r e”“‘—l[Pr—i T }

m-—1 1

B{)°’=Pr~e-~————},m_l<Pr_l+Pr)—A(0°’

and

1 1
u‘lm = ,—f(1o)l(X) {( mo no)
10 € -

X [:(1 — ena)emﬂ)' + {emn — !)e"()y} . ]}’

Mot = [R + (R? + 4ic)' 2]. (36)
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Next we determine the functions fi,(x) by sub-
stituting (35) and (36) into the continuity equation of
the order O(5) problem, i.e. (24). We find that to satisfy
the conditions on " as given in (28) and (29) we must
have

=0 (37
and
fO ) =0=1""x). (38)
We may take *
SO = 0 O = 2Oy, (39)

Putting (34) and (39) into (32) and employing (23) we
get

K== A (40)

and the order O(1) solution is now complete.

3.2. Higher-order approximations
In order to obtain higher-order approximations we
substitute (31), (33) and (37) into (27) and write

oW = @‘()”(x,y) + %8((’*)‘,”6" + @(ll}e—i:)

+ 5 OWMe + OV e (41)
We then get
ey ooy
——u~2° - PrR—2
dy dy
= [ouN? L, ol —g®
= Prkc (Aé},—'> + %P?E(,‘Cz ?}’*-—87-,
FrToRll (1) U ey
9" _ prr%Y i prog = 2pr Ec 20 AT
dy dy cy 6y

2@ (1) _ (ou®
9, — Pr REQ2 — 26 Pr@y = PrEc Ll ) .
ay? dy dy

With the help of (35) and (36), the solutions of these
equations satisfying (28) and (29) are

O = PrEe = [CY + Dige™™ — ]
_ Grisinfeo
R [CH) + D e R — hiy)]
_ 20Grsi
_ O(Rr3511<ﬂ Q{[C(U + D(l) PrRy _ h I y)]
, PrEco? 12
PR [ e
x[CV + DPe™ ® — H)(y)], (42)
2
o
O =PrEc——3
i K2(em — e™)
x[Cie™ + Dije" — ARSY]!

_ 20 Grsing 1
— E C(“ nryy
“TioRK (e”‘”— )E

+ Dy}e"” — hi(y)],

my,n, =53[PrR + (Pr*R? + 4ic Pr)* %], (43)

and

2

O = PrEc— S[CRem™ + DY

[+4
2K2(em{, _ C"”)
— h53(»)],

my,n, = L[PrR £ (Pr* R? 4 8io Pr)*%].  (44)
For brevity we have put
(1)(2} eZRz . 2eRz
22 - Prie® — 12 R(1 — Pnie®—1)
P Y ——— (1 + PrRz),
(”( ) Ag))ZeZRz B (m — 1)262Prkz
"~ 2RQ2 - Pr) 2R(Pr-— DPie™® - 1)

24P Pr [ m—1 1)k
RO = Pr\eP"F 1 €

2Prim — 1) m-—1 B I)ze“"’“:
1} eP'Rwl ,

- (Pr — )™ R =
_ 20(m - 1AY
R(Pr* — 1)e™® - 1)

Lm=l 121+P*R-’
RlgPrR _ { FRz},

A(O)e2 Rz

(2 - Pr)ef - 1)

1 Pro(m=1 N\ A9 e
_ _g V0 ks
T—Prie®—11e™® -1 R

m— 1
TP e RSy
Pr(m — 1)eRtPrs1)=
(Pr2 - 1)(eR — I)ePR = 1
1/ m—1
_15713( R_|

eR(Pr+ )z

hg}(z) =

Pr Rz

2>(1 + PrRz),

[mg(1 — ey 12

{mgy + MyYmy + ity —

H(e) =

elmy + [

PrR)

_JR ': Mmotip(l — e")(1 — e™o) eimo + o)
(my + Ag)my + Ay — PrR)

B [no(l — e™) |2
(ng + fighng + iy — PrR)

e("o + ”;u)-’q
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B3y = — mp(1 — &™) (R+mo)z
€ — 1) F(R + mg)
_ =D kens
(€ — 1) F(R + no)
mo(l - eno) moz no(emo - 1) noz
RF(mo) RF(ng) — '
Bz = _f{g:_(’f’}ﬂ:_e;g (R+mo)z
R + g,
_ AT = 1) geng:
F(R + ng)
_ Prmgim — 1}{1 — &™) (Pr R+moyz
(Pr — 1)e™® — 1) F(Pr R + my)
PrR(n — 1)(e" — 1)e!P #*no2
(Pr— 1)e™® ~ YF(Pr R + ng)
Promg{l — e}/ m—1 m
_ - 1 je™eF
Fimg)  \e"*—1
Progle™—~ 1}/ m~—1 1 Jems,
Flrg)  \e™®—1
2emo _ |} 2(ams . 1)2
Wiy = — O g MO
F,(2mg) Fi(2ng)
2myng(e™ — 1)(e" — l)e(m()+no)z

Fl(rﬂo + n())

where Re stands for the real part of a complex variable,
and

F(z) = 22 — PrRz — ioPr;
F(z) = z* — PrRz — 2igPr.
The arbitrary constants are given by

CE) = @R HG0) — K™ ~ 1);

D(l) —_ [hﬂl (U(O)]/(ePVR )

C(l) = [e".h(l) h(l) ]/ "o , (45)
D(l) [h(l)(l) — h(l} O)en,]/(en, — m.

€ = [HOO)e™ F— KO/ — 1),

DI = [H(1) — ADO)} /(™R — 1),

In (42), the terms independent of ¢ arise as a result of
the steady component of the driving pressure and free
convection heat transfer. The terms dependent on ¢ is
the steady streaming component which is due fo the
non-linearity of the governing equations and it is this
phenomenon that has attracted particular interest in
purely oscillatory flows past curved bodies. The steady
streaming here is due to heating in the presence of
viscous dissipation. It is also present in the velocity
distributions of the present approximation.

Next we calculate the pressure distribution by
substituting {31} into {26} which we then solve to get
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PR G:’)COS(P[P Ry + il {ePrR)* - P"R,\"}‘J
rR

+ Y%, t). (46)
Finally we express 4" and f*!)(x, 1) also in the form
W = ) 4 Ll e 4 e

Z(H(l) 2:t+ u(l)e~2)i)

S =190 + 3P + TP e
+ 4P e 4 TP e

then {25) similarly separates out as

& 5140 .
-—(—3—)—}—;—« =V — Grsinp®Y,
RN o , .
2 - Rw««ﬁl —igu? = f{V — Grsinp ®{",
’y 4
azutn fm{l) i
3 - RT —2ig i) = fY ~ Grsingp O
'y ay

Hence the solution of these equations can be written as
ux, y) = fV(x)H(y) - Grsing G(y),

and if these are substituted into the relevant equations
for the order O(6%) problem, namely

o' oy

= =0, v?|,_o=0=02|,_,,
then we find that
=9, @7
FO ) =0 = 1) = "), (48)
As a result of (30} we have
) =0 = f{Px) = f(x). {49)

So we can employ {42)-{44) and derive the solutions

_ a*Grsing

ud) = — PrEc e [AG3 + BRe™ ~ gbd(»n)]
_ Gr Slﬂ @ (1) (1) Ry {1}
"EC_’}B}""M[A e® — gbim]
_ 2uGrsinto
gy A6 + Be™ — giy)]
2 PrEcGro’sing i iz
O E
x[ALD + BVerr — ghy)], (50)
u“)_“ — Py FCMH(P
io K{e™ —e™)

1 * *
x [Afge™? + Bide™” — ¢{d(»)]
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_ 20Grlsin? g mi{e™ — 1)? ¥t
Ec - Allremty 1 B ety . ot1) _ 9 A
i KR [4A% 11 9571 F\(2m9)G, (2my)
ml,n‘}‘ = 2[R + (R2 + 4i0’)1"2], (51) n(l)(em(, _ 1)2 g2z
2 o3 - Y
W = — prEe i Gzra sin @ i Fyi(2ny) G ,(2n,)
o K=(e™" — ¢™}
x [ASem” + BYJer — gt(p)]. 2o to(€™ = DE™ = 1) mysny:
F(mg + ng) G {my + ng)
m}‘, il’; = %[R + (R2 -+ Sio)‘*"z]. (52) where
Now we have set G(z) =z — Rz ~ is, G,(z) = z2 — Rz — Zio.
goilz) = e® f e R dz J 5 )(z)dz The arbitrary constants AJJ, B4 etc. can be written as
in (45). The solution to order O(d) is now complete.
. W efr Rz First of all we observe that the transverse velocity is
+ Co; R2 (1 + Rz) — Dy} RZPr(Pr—1)° the same as for the idealized infinite channel. For the

gi"(z) = eR’f e R dzJ‘ HD(z)dz

horizontal channel (¢ = 0) the axial velocity becomes
exact and is independent of 8, its value being given by

u=uf + Le(ud e’ + e ), {53)
efr ke
+ C‘“ -(1 + Rz} — D‘s“——z-«-w where i and #* are given by (35) and (36} with ¢
R PrPr—1)7  _ = Q. It is therefore independent of the free convection
n g ... DY, . parameter Gr and corresponds essentially to the so-
102) = ~ G(ml) e Gn,) ' lution for an infinite channel. When the channel is
vertical the axial velocity exhibits a dependence upon
Mol — em)etRTmz Gr for all approximations.
- (€ = 1)F(R + mg)G(R + my) Even in the case of a horizontal channel, the pressure
distribution shows a strong dependence upon y as a
ny(eme — 1)elR+naz result of the free convection heat transfer. The only
— + . - i - - .
(€® — 1)F(R + ny) G(R + ng) e?(ceptnon is for a vertical channel where it is given
simply by
mo(l + e™)em® )
——— o
R F(m)Gime} P= —k«x(l + cost) 3
emn —_ 1 oz . N . N
u, Unlike the velocity distribution, the temperature
R Frio) Gino) distribution is always J-dependent for all channel
- cy o b nz orientations and even in the limit as Gr — 0. Therefore
giiz) = G(ml) " Gn,) the effect of finiteness of the channel length has more
profound effect on the temperature and pressure of the
N A(OO)mO(l - en()) e(R+m”): ﬂuid.
F(R + mg)G(R + ny) 4, SHEAR STRESSES AT THE WALLS
AD n(e™ — 1) From the physical point of view, it is necessary to
- 0 0 glR¥naz know the shear stress at the walls of the channel. They
F(R + ng) G{R + ny) ate given by
Primg{m — 1)}{1 — em)etfr Ry moz o
(Pr — 1){e™® — 1)F(PrR + mg)G(PrR + ng) To = M3 iy 1
¥y =0k
Prig(m — 1)(eme — 1)e!frRtnoz which by virtue of (9) can be written as
" (Pr— 1)(e” X — 1)F(PrR + no)G(PrR + ny) ¢ g
hty, ¢u
To.1 = e
Prmg(l —e™) ( m—1 1 \gmo: o o C¥ly=on
F(mg)G(my) \e® -1 ¢ =Dy, 1, + 1Dg; i = |Do.1|eia°"‘ {(54)
Prngle™ — 1)/ m—1 noi Since the velocity profile is identical to that of an
- F(ng)Glng) \e™®—1 1jems, infinite channel when ¢ = 0, we consider the situation
o for a vertical channel.
gBE) = — Cyo emaz _ D3 nye The values for shear stresses for ¢ = n/2 are entered
Gi(my) Gyiny) in Table 1 for various values of the parameter. First of
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Table 1

G Ec m D, D, tan o, tan o,
50 0.1 -1.0 1 59108 28434753 0.2426 —0.0864
5 6.0875 2843.7578 0.2254 —04197
10 6.0329 2844.2840 —0.1490 —0.7698
15 5.7365 2854.7101 —0.5107 —1.0131
5.0 0.1 2.0 5 6.1384 —479.5440 0.2354 —-0.4297
10 6.0838 —479.0178 —0.1490 —-0.7698
5.0 0.2 2.0 5 5.7752 —948.9680 02354 —-04297
10.0 0.2 20 5 9.8240 —1500.0000 0.2754 —0.4997

R=10,Pr=07,0a=10,6=00l,¢(=1,t=m
Table 2

G Ec m E, E, tan o, tan o,
5.0 0.1 -10 1 —0.4165 17.0535 0.3473 2.7389
5 —0.8088 8.3545 0.5938 1.3015
10 —0.9805 5.2226 0.6679 0.5116
15 —0.8404 1.1221 1.0153 2.1358
5.0 0.1 2.0 5 09713 5.0192 —-0.0367 0.2202
10 0.9488 4.8514 1.3399 -0.6019
50 02 20 5 1.2759 9.3518 —0.0367 0.2202
100 02 20 5 14711 14.8436 —-04322 0.3806

R=10,Pr=071,0=10,6=00,¢( =1t =m

all it can be observed that the shear at the upper wall is
much larger than that at the lower wall. When the
average of the temperatures of the two walls is equal to
that of the static fluid (m = — 1), the shear stresses are
positive; but for unequal wall temperatures (m = 2)
the shear stress on the upper wall changes direction.
For the lower wall an increase in frequency causes a
rise in the shear stress at low frequencies and decrease
at high frequencies. The shear stress at the upper wall
always increases with increase in frequency. A rise in
the free convection parameter Gr results in cor-
responding rise in the shear stress.

However an increase in the viscous dissipation heat
Ec causes a reduction in the stress on the lower wall
and rise on the upper wall.

5. THE HEAT FLUX
Knowing the temperature distribution we can cal-
culate the heat transfer, ¢', at the walls from the
relation
orT
oy’
which by virtue of (2.5) reduces to the following non-
dimensional form:
hq' 00
KTo—T,) @&y

qg=-k

y'=0.h

=|Ey |eor.  (55)

y=0,1

q:

Again when ¢ = /2, the values of (55) are entered in
Table 2.

Similarly it is observed that the heat transfer rates
are higher at the upper wall than the lower wall. When
the frequency increases the heat transfer at the lower
wall increases (in absolute terms) for small frequencies
but decreases at the higher frequencies. The heat flux at
the upper wall decreases always with increase in
frequency. Also the heat flux at the lower wall changes
sign when m changes from —1 to 2. An increase in
viscous dissipation heat Ec and free convection para-
meter Gr causes a corresponding increase in the heat
flux at the walls.
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ECOULEMENT PULSATOIRE DANS UN CANAL POREUX ET CHAUFFE

Résumé—On étudie la convection mixte dans un écoulement 4 travers un canal poreux quand une pression
pulsatoire est appliquée aux extrémités. On suppose que le rapport de la largeur du canal a la longueur (6)est
petit. Dans cette situation physiquement réaliste d'un canal fini, la vitesse transversale demeure non perturbée
et elle acquiert sa valeur de succion ou d'injection aux parois du canal. Un point saillant de étude est la
presence d’une composante stationnaire dans les approximations d’ordre €levé due 4 la non-linéarité dans le
terme de dissipation visqueuse. Quand le canal est horizontal, la distribution de vitesse axiale obtenue est
exacte et indépendante de &. Mais les distributions de pression et de température sont exactes et dépendantes
de 4. Par ailieurs, si le canal est vertical, seule est obtenue exactement la distribution de pression. Elle est
indépendante de la coordonnée transversale mais elle varie linéairement avec la coordonnée axiale. La vitesse
et la température sont obtenues approchées d Pordre 0(3). La tension de cisaillement et le flux de chaleur aux
parois sont discutés quantitativement.

PULSIERENDE STROMUNG IN EINEM BEHEIZTEN POROSEN KANAL

Zusammenfassung—Die erzwungene Stréomung mit tiberlagerter freier Konvektion in einem porésen Kanal,
an dessen Enden ein pulsierender Druck aufgeprdgt ist, wird erortert. Dabei wird angenommen, daf} das
Verhiltnis von Kanalbreite zu -ldnge () klein ist. Nur in diesem physikalisch realistischen Fall eines
begrenzten Kanals bleibt die Quer-Geschwindigkeit ungestort und erreicht ihren Saug-oder Ausblaseffekt an
den Kanalwinden. Ein herausragendes Ergebnis der Untersuchung ist das Auftreten eines stetigen Anteils
der Strémung bei den Approximationen héherer Ordnung, verursacht durch eine Nichtlinearitdt der
viskosen Dissipation. Bei waagerechtem Kanal ist di¢ berechnete Verteilung der Axialgeschwindigkeit exakt
und unabhingig von §. Druck- und Temperaturverteilung sind jedoch exakt und §-abhangig. Andererseits
ergibt sich bei senkrechtem Kanal nur die Druckverteilung exakt. Sie ist unabhingig von der Quer-
Koordinate, dndert sich jedoch linear mit der Langs-Koordinate. Geschwindigkeit und Temperatur ergeben
sich niherungsweise als Funktion von d. Ebenso werden Schubspannung und Wirmestromdichte an der
Wand quantitativ beschrieben.

MYJbCALIMOHHOE TEUEHHUE B HATPEBAEMOM [MOPUCTOM KAHAIJIE

AnnoTanust — PaccMaTpHBaeTCH CMEIUAHHOE TEYEHHE NpH cBODOAHONR U BLIHYXACHHOH KOHBEKUMH B
MOPHCTOM KaHaie B Ciyuae, KOTAa NyjihCupyiolmee JaBleHue NPHIOKEHO nonepex ero konuos. [lpen-
NOJIAraercs, 4TO OTHOLIEHHE WINPHHBI KaHala K €ro 1auHe (8) aBngerca Maoil BeanunHoi. Tloka3sano,
4T0 B 9TOH (U3HUECKH pPeasibHOW CHTYALUM KaHana KOHEYHOW [UIMHbI MONEPEYHAs KOMIIOHEHTa
CKOPOCTH OCTAETCH HEW3IMEHHOH M NPMHHMAET 3HAYCHUE CKOPOCTH BAYBAa MJIM OTCOCA HA CTCHKE.
OTnHYHTEIBHOR OCOBEHHOCTLIO 3allayH MABJAETCH HAJMYHE CTALHOHAPDHOW KOMIOHEHTBI CKODOCTH
TeYeHHA B ANNPOKCUMALMAX BBLICLUEr0 NMOPAAKA H3-3a HEJMHENHOCTH BA3KOH JMCCHNAUMM TeMJa.
B ciyuae, KOr[a KaHan PACHONIOKEH TOPHIOHTANLHO, MOXHO HaliTH TOYHOE DACTIPENE/ICHHE aKCHAllb-
HOM CKODOCTH, KOTODOE HE 3RBHCHT OT BeluuuHbl napamerpa 6. B To ke Bpems pacapeleneHus
JaBJEHHS U TEMAEPATYPb! ABJFIOTCA TOUHBLIMH M 3aBHCAIUMMH OT napametpa é. C apyrofi CTOpOHBI,
€CNM KAHAJ PAcloOJIOKEH BEPTHKANbHO, TO TOYHON BENUYMHOH ABISETCA TOJBKO PpACIpEAc/ICHUE
JABJICHMRA, KOTOPOE HE 3ABUCHT OT NONEPEYHOH KOOPAMHATH H H3MEHAETCS NUHEAHO C OCeBOH KOOPIH-
HaToH. 3Ha4eHus CKOPOCTH H TEMNEPATY Dbt oupesesienbl npubamkenno ¢ TounocTeio a0 O(5). Halinens
TaKKe HATIPSKEHUE CABHTA U NJIOTHOCTH TEIJIOBOTO MMOTOKA HA CTEHKE.



